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Abstract

The induced magnetoelastic stresses and Maxwell stresses generated by a uniform magnetic field in an infinite soft
ferromagnetic medium containing a finite plane crack are analyzed in this paper. The soft ferromagnetic elastic solids
with a finite crack are considered to be high magnetic susceptibility materials. By the use of complex variable theory, the
exact solutions for magnetic field quantities and both magnetoelastic stresses and Maxwell stresses can be obtained in a
closed form. The singularity of stress intensity in the vicinity of crack tip and crack opening condition can also be
determined. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Because of the possible application of magnetoelasticity in various fields, such as geophysics, optical
acoustics, and many other magnetomechanical devices (Moon, 1984; Maugin, 1988; Eringen and Maugin,
1989), the theory concerning the interaction between the externally applied magnetic field and elastic solid
has received rapidly increasing attention in the recent years.

The magnetoelastic interactions in ferromagnetic material was summarized by Brown (1966). On the
basis of the large deformation theory of elasticity and classic theory of ferromagnetism, he developed a
rigorous phenomenological theory of magnetoelasticity, and Tiersten also derived the consistent set of field
equations and boundary conditions by the application of the laws of continuum physics (Tiersten, 1964)
and variational principle (Tiersten, 1965). Since their theories are nonlinear and complicated, Pao and Yeh
(1973) have developed a linear theory of magnetoelasticity for soft ferromagnetic materials with multi-
domain structure, which are widely used in magnetomechanical technology. The linear theory has been
applied to investigate the buckling behavior of an isotropic plate subjected to a transversally applied
magnetic induction (Pao and Yeh, 1973), to find the stress intensity factors of cracks in soft ferromagnetic
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solids (Shindo, 1977, 1978, 1980), and to calculate the induced magnetic fields in a magnetized elastic half-
plane subjected to a mechanical singularity (Yeh, 1989).

In this paper, we investigate the elastic fields induced by the applied magnetic fields on a soft ferro-
magnetic solid containing a crack, and make study on two-dimension crack problem for the soft ferro-
magnetic solids subjected to applied uniform magnetostatic fields and far-field stresses. The solution is
expressed in a closed form by the use of complex variable technique.

2. Formulations of magnetic fields

The static magnetic field satisfies the following equations:
Bi; =0, ety ;=0 (1)

where B; and H, are magnetic induction (or magnetic flux density) and magnetic intensity, respectively; e;
denotes the permutation symbol and ( , ) is the partial differentiation with respect to the space variable.
The constitutive law of magnetic field is

B; = po(H; + M;) = popH; (2)
with
M; = yH;,, =14y (3)

where M; is magnetization, yu, = 4m x 10~7 N/A? is a universal constant, y and yu, are magnetic susceptibility
and relative magnetic permeability, respectively. For linear soft ferromagnetic materials, y ~ (10*> —
10°) > 1 (Moon, 1984).

In view of the second part of Eq. (1), magnetic intensity may be expressed as gradient of a scalar po-
tential ¢ (i.e. H; = ¢ ;). Furthermore, by the use of the first part of Egs. (1) and (2), it is concluded that ¢
satisfies Laplace equation (i.e. ¢, =0). Let us extend to the analytic complex potential function for
magnetic fields in terms of complex variable z = x 4 iy as

h(z) = ¢(x,y) +iy(x,») (4)

where the real part ¢(x,y) is a scalar potential function described above and the corresponding function
p(x,y) in the imaginary part which also satisfies Laplace equation is derived from Cauchy-Riemann
equations. The complex function A(z) relates to the magnetic field quantities as

Hx+i['[}r :a_(/)+ia_(P:h/(Z)
Ox )% (5)
B, +iB, = &9 @
X y = Holly ay ox = Nl \z

where the complex conjugate of functions is denoted by the overline. The expressions of two magnetic field
quantities in terms of %(z) as shown in Egs. (5) can satisfy field Eq. (1). By integrating along the boundary
and the surface of a body, the following two equations can be deduced from Egs. (1) and (5) as

_[(%,. 0%, _
/(dexﬂLHydy)—/(axderaydy)—qo

B dy dx B oy oy B
/(anerByny)de / (BxaBy$>dS /Hoﬂr<adJ’+adx> = Lplt,)

where (n,,n,) = (dy/ds, —dx/ds) is the outward unit normal on the surface S of body. Such a definition will
keep the body on the left if the path of integral is along counterclockwise direction (England, 1971). It is

(6)
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noted that the relation dS = 1ds for unit depth is used in the derivation of Eq. (6). Since the corresponding
boundary conditions of Egs. (1) can be expressed as (Moon, 1984)

7{ (. dx + H,dy) = 0, / (Bun, + Byn,)dS = 0 (7)
C N

The area S denotes the surface enclosed by the closed loop C. Referring Egs. (6), the preceding equations
are also equivalent to that both ¢ and ,u,y are continuous across the boundary. In this section, an infinite
soft ferromagnetic material containing a line crack situated along the segment L = (—a, a) of the real axis is
shown in Fig. 1. The real axis is represented as the sum of L and L*, where L is the region of crack and L* is
the rest part. Then following the similar procedure developed by Muskhelishvili (1953) to solve elastic fields
around a crack, it is convenient to introduce two complex functions for magnetic fields as

M) =h(z), QM) = V() (8)

where the superscript M denotes those quantities related to magnetic fields. The function W(z) denotes
complex conjugate of the coefficients (not argument) in ®™. The boundary conditions of magnetic fields
along real axis can be expressed as

By
oM (x) — QM (x) = 21—~ onlL 9)
l‘O/lr
M- Mt . B,
OV (x) — Q7 (x) = =2i— onL (10)
/‘Ollr
Gy o y \\\ o
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Fig. 1. The far-field stresses and magnetic induction on a soft ferromagnetic solid with a line crack.
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The quantities with superscript + and — denote the upper and lower surfaces of crack as shown in Fig. 1. It
should be mentioned that the following equation has been used in the derivation of Eqgs. (9) and (10):

M (x) = lim QM(z) = lim Q™(2) = lim &M(z) = M+ (x) (11)

y—0— y—0+ y—0+

Then on adding and subtracting of Egs. (9) and (10) we have

[@M(x) — QM()] " + [OM(x) — @M (x)] =20M(1) on L (12)
[@M(x) + QM(0)] " = [@M(x) + M(x)] =2M(1) onL (13)
where o() and ﬁ(t) are related to the magnetic induction on L by
M + M _ —i + _ p—
(1) = o ~(B+B), P = o (By —B)) (14)

and they must satisfy the Holder condition on L (England, 1971). Eq. (12) is a Hilbert problem for the
function @(z) — Q(z) and Eq. (13) is a Plemelj equation for the function @(z) + Q(z). Therefore, we can
obtain the solutions of both functions as (Muskhelishvili, 1953)

() - M [ k@) (15)
t)dt
M (z2) + QY (2) m/ﬁt_ 0(z) (16)
where the Plemelj function X (z) satisfying the condition X*(¢#) = —X(¢) may take the form as
X@) =(t+a) Pe—a)? (17)
with the selected branch cut such that
lim[2x(2)] = 1 (18)

The singularity in Eq. (17) implies that the near-tip magnetic induction always possesses the characteristic
inverse square root singularity in terms of radial distance from the crack tip. Such a feature would not be
affected by the discontinuity in magnetic permeability jump across the material interface. The general so-
lution of ®™ can be derived from Egs. (15) and (16)

2Tfl/ﬁt—z 27:1/X+ (t—2) ;Q(Z)+%X(Z)P(z) (19)

For a single crack problem, the function P(z) can be expressed as a polynomial of degree no more than 1
(Muskhelishvili, 1953), i.e.

P(z) =ciz+co (20)

Furthermore, the function Q(z) must be a constant since it is holomorphic in the whole material region
including small and large |7, i.e.

O(z) =d (21)
Through the Eqs. (1) and (5), the magnetic intensity H; which is the gradient of potential ¢ plays the role as

the driving term of magnetic field and the magnetic mductlon B; can be viewed as flux term of magnetic
field. Therefore, the impedance of magnetic flux can be defined as
H 1
Z=—= (22)
B Holr
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where H(= (H? +Hy2)1/ ?) and B(= (B +B§)l/ *) are the strength of magnetic intensity and magnetic in-
duction, respectively. Due to the variation of magnetic permeability between different materials, the applied
magnetic induction By, + 1By, in the soft ferromagnetic body (y, > 1) containing a crack will go around the
crack (for air, yr, = 1) rather than pass through it. Such a feature is similar to that the magnetic induction in
air (i, = 1) will not pass through the superconductor (¢, = 0). From the above description, we can treat the
boundary of crack as the insulated surface of magnetic induction, i.e.

oM(1) = ¥(1) =0 (23)

The solution can be found once the coefficients of P(z) and Q(z) are determined. On the basis of Egs. (5), (8)
and the expression of applied magnetic induction on the soft ferromagnetic material, the functions &(z) and
Q(z) for large value of |z| take the form

qu(z):rM+0<l), QM(z)er+0<1> for |z| > 1 (24)
z z
where
1 .

FM = 'u(]lur (BOX — IB()y) (25)
Substituting Eqgs. (20) and (21) into Egs. (15) and (16) and using Eqgs. (24), we can obtain

a=IrM-™  g=rM4M (26)
By applying Eq. (11), the first part in Eq. (7) can be expressed as

/ [6M (1) + O™ (1)] di — / (@M (1) + Q" ()] dr = 0 (27)

L L

Thus on the basis of residue theorem and Egs. (15), (17) and (20), Eq. (27) becomes

[ {10 - "o - [0%0) - ] Jar= [ [0M0) - @M ac

L c
ci{ +co

~Je JTral-a

where the range of a closed loop C surrounding the crack can be extended from the crack surface to infinity
(i.e. |R| — o0).
Substituting Egs. (20), (21) and (23) into Eq. (19) and using Egs. (8), (26) and (28), we have

H(z) = BM(z) = (ﬂ + 230x> b (BOX - iﬂ) (29)

d¢ = 2micy = 0 (28)

C 2pop \ V2 — a2 Mok, 22 — a2

Then the magnetic field quantities can be obtained from Egs. (5) and (29) as

) 1 : 1 . Byz
H,+1H, = B, +1B,) =W (z) = (Bx—I—li}) 30
T ok ( }) ) Moty ‘ 72 — q? (30)

3. Formulations of magnetoelastic fields

The equation of equilibrium under mechanical and magnetic body forces is (Brown, 1966)

i + MMyt + Fy = (ty + 1)), + F; = 0 (31)
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where ¢, t}}’[, UM;H;; and F; are the magnetomechanical stress tensor, the Maxwell stress tensor, the
magnetic force and the mechanical force per unit volume, respectively. Neglecting the effect of magneto-
striction, the constitutive equations are (Pao and Yeh, 1973)

ty = Ty + @M[Mj, Ty = Ak + Guiy + u;)
V4 (32)
0 = BiH; — Yt H 03

where 7;; is the elastic stress tensor for a general nonmagnetizable material. The symbols A and G are Lamé’s
constants, and J;; is Kronecker delta. It is noticed that both the magnetoelastic stress and elastic stress
tensor are symmetric for soft ferromagnetic material. Substituting Eq. (32) into Eq. (31) and using Eqgs. (1)-
(3), we have

(/1 + G)uk,ki + Gui,jj + 2/.1.0%1‘1]}[,/ + F; =0 (33)
or in complex form
0 /0D oD o*D — 0 G G4
2(2 — | =+ AG ——+ 2upx | W (2) =+ W (z) = | I = 4
(’“+G)az(az+az>+ Groraz T 2o @), +H @) 7 W) + 57 =0 (34)
with
. oV _ov _or
D = u, + iuy, F, +1iF, = w5 (35)

where D is complex displacement and V(z) is force potential which is real (England, 1971). Since A(z) is an
analytic function, we can obtain

0 G

&' =% =0 (36)
Then Eq. (34) takes the form

0 4

&19 0 (37)
where

GD oD oD —

V(z) =2(4+ G)( % 5 ) +4G— % + 2uoyh (2)H (z) + V (2) (38)

The real and imaginary parts of 0D/0z can be calculated by taking ¢ and its complex conjugate. Hence
oD — 1
4(A+2G) Re< 2 > + 2uoxt (2)H (z) = =V (z) + E(ﬂ’(z) +(2))
oD 1 (39)

4Glm< 2 ) 5(19 (z) = ¥(2))
and then

8G(1+2G) o +4Guyyh' ()W (z) = (L +3G)¥ (z) — (A+ G)¥ (2) — 2GV (2) (40)

0z
The integration of Eq. (40) with respect to z yields

8G(A+2G)D = (/. +3G)V(z) — (4 + G)z9'(z) — 4Gy, / H(2)h (z)dz + o(z) — 2GY () (41)
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or

26D = 19(&) ~ 24'E) ~ V) — 7 5 W) 377 50 ¥ (42)
where

00 = 3670 WO =~ 00 =g 1O [red @3)

The symbol w(z) is an arbitrary function.
The stress components in Egs. (32) can be expressed in terms of the complex displacement and magnetic
field as

(e + t}y)T = (to + tyy) + (e + tyy)M

44
(txx — by + 2ith)T = (txx — by + 2itxy) + (txx — by + Zitxy)M ( )
and
(tw - ith)T = (tw - ith) + (tw - itxy)M (45)
where
B 0D 3D\ o, o A . o~ A+ G
Lo + 1y =2(A+ G)<§+§> +?(Mx +M;) = 2[(,1,’) (2)+ ¢ (z)} + poyh (2)W (z) — /H—ZGV(Z)
(te + )™ = B.H, + B,H, — po(H] + H}) = poyh ()l (2)
3 _ oD Ko 2 2 : _ 17 7 n 7 A + G oY
b = by - 2ity = 4G+ LY (ME = M 4 2MM,) = =2[267C) + )| + o OV G) ~ 756 o

(tee — 1y + 2it, )™ = B.H, — B,H, + 2iB.H, = o, i’ (z) I’ (2)
— ——— 1 114G oY
|3l -5

242G

by~ ity = #() + §C) + [ + VE)| + [ D@~ FEHE) =

(1 = it)™ = bato |1 (W) — WD)
(46)

and the stresses with superscript T denote the total stresses which are the sum of magnetoelastic stresses and
Maxwell stresses. Since the Maxwell stresses are not related to the deformation and are defined artificially
just for the sake of convenience, only the magnetoelastic stresses rather than the total stresses are practical
for the present problem. Thereafter, the surface traction on boundary of a body can be expressed by stress
components in a complex form as (England, 1971)

. . | dz . dz
=ity —it) 5 = 5|t 1)~ (= 1y + 200) S (47

. . dy
P+iQ = (t +ity)"

+10 = (t +ity) i
Hence by the use of Eqs. (46) and (47), the resultant force R(z) over the arbitrary arc AB on the boundary of
the body is obtained
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R(z):/A (P+10)ds

= i[$() + 28E) + 9E) + morh D E) ~ 2 (e + DRE G| |

i [T 146) = 5+ 78 (48)

On the basis of Egs. (42) and (48), the solutions of mechanical field can be determined such that the dis-
placement boundary condition defined in part of boundary and traction boundary condition defined in the
rest part of boundary, respectively, are satisfied.

4. Magnetoelastic fields around a crack

Following the similar procedure for determining elastic fields around a crack by Muskhelishvili (1953)
and neglecting the body force, we introduce two complex functions for magnetoelastic fields as

®(z) = ¢'(z)

—_ — — o 49

Q) = Be) + () + ()~ L ) @
The stress components (£, — it,,)" in Eq. (45) can be expressed in terms of @(z) and Q(z) as

(1 — ity)" = B(2) + Q) + (2 = )0 (2) + o [ (5) = W) | W) (50)

Therefore, using the feature that the function #'(z) in Eq. (29) is real on the crack L, the traction boundary
conditions in the upper and lower surfaces of crack are expressed as

O (x)+Q (x) = (t, —ity) T =P" onlL (51)

& (x) + Q" (x) = (t, —ity) =P onlL (52)
Then adding and subtracting of Egs. (51) and (52) we have

[®(x) + Q(x)]" + [®(x) + Q(x)]” =2a(t) onL (53)

[@(x) — Q)] — [@(x) — Q(x)]” =2p(t) onL (54)
where

a(t) =3(P" +P7),  B(t)=3(P" —P) (55)
must satisfy the Holder condition on L. The solutions of the Egs. (53) and (54) are

O(z) + 0z) = Xn(f) /L Xf(‘t()t g,di 5+ XETE) (56)

&(z) — Qz) = 1 M + U(2) (57)

T[i L t—z

where the Plemelj function has been defined in Eq. (17) with branch cut shown in Eq. (18). Therefore, the
general solution of @ can be obtained as
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27t1 /X+a(tgt—z 21' ﬁ(t)dt"'lX(Z)T(z)—i——U(z)

1
/ o(ct()t) dr E L [ft(t) (Zit+iX(z)T(z) —iU(z) (58)
21t1 Xt()(t—z) 2miJ, t—z 2 2
For a single crack with surface free of traction, we can obtain
w(t)=pH)=P =P =0 (59)

and the function R(z) can be expressed as a polynomial of degree no more than 1 (Muskhelishvili, 1953), i.e.
T(z) =ez+ e (60)

Furthermore, analogous to the derivation of Eq. (21) for magnetic field, the function U(z) is a constant
since it is holomorphic for small and large |z|, i.e.

Uz) =f (61)

In order to determine the coefficients e;, ey and f, it is necessary to consider the conditions at infinity. Let us
assume that

¢'(z) = (4 +iR) +0(§), Y'(z) = (J +iK) +O<§) for |z > 1 (62)

The symbols 4, R, J and K are constants which can be determined from the magnetoelastic stress condi-
tions at infinity. It is convenient to consider that the magnetic induction is generated at outside medium
(such as air) and applied normally across the edge of soft ferromagnetic material as shown in Fig. 1. In view
of Egs. (31) and (47), the total stresses rather than the magnetoelastic stresses on the boundary surface are
continuous in the absence of body force. Substituting Eqgs. (24) and (62) into Eq. (44) and neglecting body
force, we have

2
GTO + 0-2 + BOy) =44 + —Xz (B(z]x + B(z)y)

2 o( Holt (63)
_ i : (1 +2)
(aoo_o_oc 621w+—(BZX+Bz 62152—2(.]—11( +T7
¢ o) s (B BY) )+

r

Bj, + 2iBo.By, — B

to obtain the constants A4, J and K, in which (¢5° +165°) are the principal stresses at infinity. The symbol @
denotes the angle between ¢7° and the real (or x) axis and 6 = tan~!(B,/By,) denotes the angle between the
applied magnetic induction and the real axis as depicted in Fig. 1. Aside from the applied stresses, the
Maxwell stress (B} + Bf]y) /2u, is generated by the applied magnetic induction. The discontinuity of
Maxwell stresses across the material boundary was also mentioned by Pao and Yeh (1973) and Moon
(1984). The relation between the quantity C and the rotation at infinity ®*> can be written as

=1Im(0D/0z) = (1 + x)R/(2G) (64)

The substitution of Egs. (63) and (64) into Eq. (62) together with the relation (Bj, + Bj,)e* = (Bj, +
2iBy.By, — Béy) derived from & = tan~'(By,/Byx) gives

¢ (2) = F+2L(‘1‘u)(32 +B§y)+0(i>

r

1 (1 wu+y . 1
lﬁ/(z) =TI _2_#0 (E_ 'u% )(B(Z)X — 2lBoxB()y —B(z)y) + 0(;) for |Z‘ > 1

(65)

where
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I, o e, . 2Gw™ L, o o o
F:Z(UI—HTZ)—HIJHC’ 1"’:—5(01—02)@2 (66)

Note that the functions @(z) and Q(z) must satisfy the conditions at infinity, and then can be expressed
as

B 1 1 9 ) ) 1
<D(z)—F+2#0(4 ’uf)(BOX—’_BOy)—’_O -

(67)
- = 1 1 g . 1
Qz)=T+1T" - o KZ — ,u_§> (BX. + 4iBy, By, — 3B§},)} + 0(;) for |z| > 1
Substituting Egs. (60) and (61) into Egs. (56) and (57) and using Eq. (67), we have
= F+T+F+2L (1 47)(32 iBo:Byy)
Ho :ur (68)

— = 1 4
f:r—r—r/+4—u0(1 #7>(B§x+2130x30} B;,)

T

The remaining constant ¢, can be determined from the condition that the displacement must be single
valued, i.e. the displacement must revert to its original value when z describes the point on the contour C
which encloses the crack. The derivative of displacement along upper surface of the crack can be deduced
from Egs. (42) and (49) by dropping the body force,

(%) =wo+ior
ZlG{ [x(b*() Q () —%l_f (DK (t) — )+G2Gu0,<h (t)E”(t)H fortelL (69)

The integration of displacement derivative around the crack surface will become zero such that the single-
valued displacement can be assured, i.e.

%{ /L [W*(f)—f?(f)—%hﬂr)hﬂt) 7 +G2Gﬂ07h (r)}?(z)]dt

— () — Ot (1) — P G N _
/L |:K€D ) —Q (1) 3 W (O (t) — 7 +2G“°7h (t)h (t)} dt} 0 (70)
This equation can be rearranged as

/L {KW@ — 0 (O] + 127 () — 2 () + 5 [ WH () =K (0 (1)

- ag e O @ - i 0] fa

= [ |00+ 20 + 52 HOR O = O (0|t =0 )

where the closed loop C surrounding the crack can be extended from the crack surface to infinity (i.e.
|R| — o0). The substitution of Eq. (58) into Eq. (71) with using Eqgs. (17), (29) and (59)—(61) yields

ey = 0 (72)
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Then substituting Egs. (59)-(61) into Eq. (58) and using Eqgs. (66), (68) and (72), we obtain
¢'(z) = 0(2)

z 00 00 00 00 iw : 2Gw™ 1 00 00 i@
:szfiuq-+%)_@1_%)&]+LT:;+Z@I_%)&}
1 /1 g . iByz 1 .
H (4 G ) (Boc+ 10 L/zz—a2 g (Bt iB) 73)

By making use of Egs. (46), (50), (58) and (73), the magnetoelastic stresses can be expressed in an explicit
form as

: el z z e (z—za* 1 1 .
ol = 3 5 1 Bi +iBocBy,
w1 2(\/22—a2+\/22—a2>+2(22_a2)3/2+2,uo,u§ ox T 1805
O 1= } 2 [ 1z (1 _X)ZH
X V= - 74
{\/Zz_az VZz2 — a2 YRR VE-—a VR & (74)

where

el = er + ey

. , 1 4y . . 1 4y

0 2 00 2 2 00 00

= sin cos — (1 —-—=)B; —1 — sin @ cos — (1 ——= | By.Bo,

7 ERE o 2t ( H? ) o {(61 & ) v o 2 ( f ) . Oy]
B? BB

~ o sin’ @+ 0 cos’ @ + —2 — i {(aloc — 63°)sinwcos @ + —— Oy] (75)
2 2y

is rearranged from Eq. (68), and e;r and ej; are taken as real and imaginary part, respectively. The term
1 —4y/p? ~ 1 for linear soft ferromagnetic material with y and p.(= x+ 1) > | can guarantee the last
approximation in Eq. (75). The stress intensity factor of Maxwell stresses near the crack tip (k; — iku)M can
be derived from Egs. (30) and (46) and defined as
1 2y+1
(k= k)™ = lim 2(z — a) (1, — ity,)™ = ——

2—a T

aBﬁy (76)

Then the Maxwell stresses at a point near the crack tip (i.e. » < 1) can be expressed in a form

™M 0 1 0 ™M 0 1 0
M _ % 2V 2 Y M_ "M 27 - an2 Y
txx_zr(sm 2 241 2)’ Ty (COS 2 241" 2)’

+
M
V2| 2x+1 2

0
cos 2] (77)
where the polar coordinates r and 6 as shown in Fig. 1 take the crack tip (a,0) as origin and relate to z as
z = a + re'’. By the use of Egs. (29), (46), (50) and (73), the stress intensity factor of magnetoelastic stresses
can be defined as function of the distance measured from the crack tip. In view of Egs. (32), (46) and (74), it
is noticed that those terms in Eq. (74) related to e; come from t; with singularity 1//7 near the crack tip
and the others come from p,M;M;/y with singularity 1/r near the crack tip just like the Maxwell stresses.
Since these two parts attenuating with the distance r measured from crack tip along positive real axis are
different, we investigate the singularity of stress intensity factor for three ranges:

Range 1: 200/12 < r/a

In this range, the terms with singularity 1//7 (i.e. ;) are dominant. Then the stress intensity factor for
the mode I, &y and mode I1, kj; of magnetoelastic stresses at point z along positive real axis outside the crack
can be expressed as
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. . . . 1-—
(ki — iky) = im\/2(z — a)(t,, — it,,) = lim2/2(z — a)P(z) = \/5(61 + 12 BOXBOy) ~ ae, (78)
z—a . z—a Holk

where the relation (1 — y)/u2 < 1 has been used in the absence of mechanical loads ¢7° and ¢5° to assure
(1 = %)Bo:Boy/2pto1 < BoxBoy /21 ~ ei1. The corresponding magnetoelastic stresses of the point near the
crack tip can be expressed as

t *icosg l—singsinﬁ —ﬁsing 2+COSQCOS3—0
o 2 2 2 Vor 2 2 2
ki 0 .0 . 30 kn . 0 0 30
=1 cos=(1 2 sin>— MoinZ coss cos——
by \/270052( —|—sm25m2)+\/2_s 200520052 (79)
ty, = k smecosgcos36+ il cose l—sinesinw
RN S h) 2 2 \or 2 2 2

Range 2: 1/(5012) < r/a<200/12
For the intermediate range of r, both terms with singularity 1/y/r (i.e. ;) and 1/r (i.e. uoM:M;/y) are
comparable to each other, the stress intensity factor of magnetoelastic stresses k; — ik reduces to

(ky — ikn) = lim V2(@E = a)(ty —ity) = lim /2(z - a) [2¢(Z) n 212— 1 Hohf(z)m}

= Vae, + | (1 )(k" ika) (80)

1 2yx—1
Hopy 2

where

2y —1 —
(6 = ) = lim 2 — a)(, —it) ~ i — )| 2 o | = a8, (81)

and the corresponding magnetoelastic stresses of the point near the crack tip can be expressed as

t —icosg l—singsinﬁ —ﬂsing 2+cosgcos3—0 ka sian—&- ! coszg
xx_\/ﬂ 2 2 2 V2r 2 2 2 2r 2 2y—1 2

t —ﬁcosg l—ksingsinﬁ -l—ﬂsingcosecosﬁ E cos2g+ ! sinzg
e 2 2 2x—1 2

V2r 2SN )t SN 0S5 Cs

k.0 0 30 kn 0 0 . 30 K [2(x—1) . 0 0
sin— cos= cos— + cos (1 sin - sin— >+2r 2,1 in 5 cos > (82)

te =
YV 2 2 2 Voo 2 2 2
Range 3: r/a < 1/(5042)
For the present range, the terms with singularity 1/ (i.e. u,M;M;/y) are more significant, and then the
stress intensity factor reduces to &{ — ik{};. Then the magnetoelastic stresses of the point near the crack tip are

¢ *E sin2€+ ! coszg t *ka cosg ! sng
o 2 2y—1 2)’ w0 2 2 —1 2
K T2(—1) 0
_ _1 _ _
txy2r{2;{—l sin 5 cos 3

(83)

In Eq. (80), the term +/ae; induced by the boundary conditions at infinity as described previously has 1/+/r
singularity near the crack tip. Alternatively, the second term (k{ —ik%)/(2(z — a))'* comes from the defi-
nition of magnetoelastic stresses and has 1/r singularities near the crack tip. Both terms are comparable to
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each other in the intermediate range (i.e. range 2) since u, > 1 for soft ferromagnetic materials. The
contributions of these two terms to magnetoelastic stresses #,, and ¢, along the real axis (i.e. 0 = 0) are
presented in Eq. (82) and shown in Fig. 2. The quantities k;/+v/2 V2r, /v/2r and k{/2r are generated by these
two terms, respectively. Since &{; and 0 are zero for the present case, the contrlbutlons of &y, k{ and kfj to ¢,,
are absent. It is remarked by Moon (1984) that the typical magnetic induction By = 1 T will induce
magnetic stress B2/2u, = 58 psi. Such a stress will act on the soft ferromagnetic material just like that of
far-field stresses ¢7° and ¢5°. Since we only focus on the effect of magnetic induction, the applied stresses o7°

and ¢5° whose effects have been studied thoroughly are dropped in all the illustrative figures. In Fig. 2, there
are two dashed lines between separate range 1-3. Along the dash line between range 2 and range 3, the

—
o)

160

140 —— ki/2r
L —o— kj/2r

120 I Range 3 Range 2 K/ V2r

100

80
60
40
20

tyy/ (e Bo*/210) , tey/(1tr Bo™/21t0)

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01 |

0.00 | 1 1 i 9 1 I
100 200 300 400 500

tyy/(ur OZ/ZHO) 5 txy/(l'lr BOZ/ZHO)

Fig. 2. The contributions of various terms on dimensionless magnetoelastic stresses along real axis with r (6 = 60°): (a)
0.005/u? <r/a<0.05/p% and (b) 50/p2 <r/a< 500/ u2.
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35

30

0.00 0.01 0.02 0.03 0.04 0.05
r/a

Fig. 3. The variation of dimensionless magnetoelastic stress ¢,,/(B3/2u,) on real axis with r.

magnitudes for & //2r and ky /v/2r are one-tenth of k{/2r. Alternatively, the dash line between range 1 and
range 2 indicates the magnitudes of k{/2r is one-tenth of 4,/ V2r. It is guaranteed that the term with sin-
gularity 1/r and the terms with singularity 1/+/r are negligible in the range 1 and the range 3, respectively.
For a typical value of p, as 1000, the intermediate range becomes 2 x 107 > r/a > 2 x 10~ which is below
the detectable range of instrument. Therefore, the dominant term \/aejr in range 1 is the most important.
Figs. 3 and 4 display the variation of magnetoelastic stresses ¢, , on positive real axis outside the crack
with the distance r. The variations of magnetoelastic stresses to angle o are shown in Figs. 5 and 6, re-
spectively. In Figs. 3-6, the value of magnetic susceptibility y is assumed to be 100. It is found that, when ¢
approaches to zero, the stresses decrease rapidly. Such a feature confirms that the component of magnetic
induction parallel to the crack surface will not induce singularity.

ty/(Bo*/210)

0.00 0.01 0.02 0.03 0.04 0.05
r/a

Fig. 4. The variation of dimensionless magnetoelastic stress #,,/(B3/2u,) on real axis with r.
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Fig. 5. The variation of dimensionless magnetoelastic stress #,/(B2/2y,) on real axis with J.

F —e— 1/a=0.001
1/a=0.01
1/a=0.1

sl

0 30 60 90 120 150 180
3 (deg.)

Fig. 6. The variation of dimensionless magnetoelastic stress t,,/(B3/2,) on real axis with 6.

The formulation of driving force acting on the crack within ferromagnetic materials was given for soft
ferromagnet (Sabir and Maugin, 1996) and hard ferromagnets (Fomethe and Maugin, 1998) under the
action of magnetic induction. For soft ferromagnets, the J-integral can be expressed as (Sabir and Maugin,
1996)

J = / [WN, — nitu; — (Beng) poH)dT (84)
r
where W is magnetoelastic enthalpy and n, and n, are components of outward unit normal to the contour I

which is an arbitrary path surrounding the crack tip. Since the integral in Eq. (84) is path independent, it is
convenient to take contour I as a circle with radius » and its center is located at the crack tip as shown in
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Fig. 1. The indexes i, j, in the equation may be space coordinates x or y. For isotropic materials described
by Egs. (3) and (32), the magnetoelastic enthalpy becomes

W =302+ 2G)(&, + &) + denty + Gegy — S (1 + 1) (H} + H) (85)
in which ¢; is the strain then can be obtained from Eq. (32) as
1 Tij )véij Tk .
“(u =L . i j=x, 86
it u) =56 =56 3742 W TR (86)
Here the relation 7., = v(t, + 7,,) deduced from plane strain assumption has been used. The magneto-
striction terms are absent in Eq. (85) because they are much small than those terms related to magnetic
susceptibility under the small strain assumption. To illustrate the effect of magnetic field on driving force (J-

integral) on crack, we consider the case that w and B, equal to zero, which leads k;; = 0. In order to
evaluate the integral in Eq. (84), we apply the following identity

&ij =

Uy + 10y, :%Lz)+aa_§
21G{K<p() QE) - (z-2)d(2) — z[ﬁ%+h/( )}h’(z)—%iiog(;/h’(z)h”(z)dz}

(87)
which can be obtained from Egs. (42) and (49). Thereafter, substituting Egs. (79), (85)—(87) into Eq. (84)
and taking (n,,n,) = (cos 0,sin 0), we have

(1 —v?)mk? 1 (1 —v?)mk?
=—> 1l +0|— || m—D0F 88
J Z + 0 7 (88)
where Young’s modulus £ and Poisson’s ratio v relate to A and G by
G(32+2G) A
ik Skl M’} == 89
G T 20+06) (89)

The result in Eq. (88) is in the same form as that given by Broek (1982) but here the 4 has an extra term
which relates to the magnetic induction.

Since Eq. (59) for traction free on crack surfaces is valid only for open crack, it is necessary to check
whether the crack is open or not. The derivative of relative displacement between upper and lower surfaces
of crack can be derived from Eq. (69) as

ul(t) =Imu (1) + iu;(t)] (90)
where

w (t) + fud (6) = [ (0) + 1 ()] — [2,(1) +iae, ()]

- { {w(x) ()~ BT () - (O m]

ead(n — ot FoTm G =
ko)~ @40 =20 ) - - 070 o1)
The crack opening condition

t
/ui(t’)dﬂ}() fortelL

a

can reduce to

Im[zlG(H ey V12 — azq = %(H DV — 2(erg) =0 (92)
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The crack opening condition in Eq. (92) (i.e. ejr = 0) is identical to that &; is positive as shown in Eq. (78).
The meaning of positive &; is that the total stresses near the crack tip tend to open the crack. By observing
Egs. (78), (80), (81) and (92), the magnetic induction component B, parallel to the crack surface has no
significant contribution to stress intensity factor or crack opening. But the component By, of applied
magnetic induction, which is normal to the crack surface tends to open the crack since the definition of 4
are all positive for the area outside the crack.

5. Concluding remarks

The solutions presented here are restricted to soft ferromagnetic material problem. A closed form so-
lution is obtained by the application of complex variable theory. The stress intensity factors and the driving
force for the crack within a soft ferromagnetic material under the action of applied magnetic field are
obtained and the crack opening condition is also pointed out.
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